Incremental Learning with Support Vector Machines
نویسنده
چکیده
Support Vector Machines (SVMs) have become a popular tool for learning with large amounts of high dimensional data. However, it may sometimes be preferable to learn incrementally from previous SVM results, as computing a SVM is very costly in terms of time and memory consumption or because the SVM may be used in an online learning setting. In this paper an approach for incremental learning with Support Vector Machines is presented, that improves existing approaches. Empirical evidence is given to prove that this approach can effectively deal with changes in the target concept that are results of the incremental learning setting.
منابع مشابه
A Comparative Study of Extreme Learning Machines and Support Vector Machines in Prediction of Sediment Transport in Open Channels
The limiting velocity in open channels to prevent long-term sedimentation is predicted in this paper using a powerful soft computing technique known as Extreme Learning Machines (ELM). The ELM is a single Layer Feed-forward Neural Network (SLFNN) with a high level of training speed. The dimensionless parameter of limiting velocity which is known as the densimetric Froude number (Fr) is predicte...
متن کاملMining Biological Repetitive Sequences Using Support Vector Machines and Fuzzy SVM
Structural repetitive subsequences are most important portion of biological sequences, which play crucial roles on corresponding sequence’s fold and functionality. Biggest class of the repetitive subsequences is “Transposable Elements” which has its own sub-classes upon contexts’ structures. Many researches have been performed to criticality determine the structure and function of repetitiv...
متن کاملIncremental Learning of Support Vector Machines by Classifier Combining
How to acquire new knowledge from new added training data while retaining the knowledge learned before is an important problem for incremental learning. In order to handle this problem, we propose a novel algorithm that enables support vector machines to accommodate new data, including samples that correspond to previously unseen classes, while it retains previously acquired knowledge. Furtherm...
متن کاملOn-line Support Vector Machines for Function Approximation
This paper describes an on-line method for building ε-insensitive support vector machines for regression as described in (Vapnik, 1995). The method is an extension of the method developed by (Cauwenberghs & Poggio, 2000) for building incremental support vector machines for classification. Machines obtained by using this approach are equivalent to the ones obtained by applying exact methods like...
متن کاملData Condensation in Large Databases by Incremental Learning with Support Vector Machines
An algorithm for data condensation using support vector machines (SVM’s) is presented. The algorithm extracts data points lying close to the class boundaries, which form a much reduced but critical set for classification. The problem of large memory requirements for training SVM’s in batch mode is circumvented by adopting an active incremental learning algorithm. The learning strategy is motiva...
متن کامل